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Abstract

We report on experimental measurements of a temperature tuned air-gap etalon

filter. The filter exhibits temperature dependent wavelength tuning of 54 pm/C. It has a

nominal center wavelength of 532 nm. The etalon filter has a 27 pm optical bandpass and

600 pm free spectral range (finesse - 22). The experimental results are in close agreement

with etalon theory.
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I. Introduction

Fabry-Perot etalon filters find use in very narrow band (< 100 pm) optical

instruments. Using one or several etalon filters in tandem with an interference filter

provides a single narrow optical bandpass. In lair based active instruments, this permits

filtering of the backscattered laser light fi'om undesirable optical signals (e.g. sun light).



LaserinstrumentsusingFabry-Perotetalonsin theoptical receiverhavetwo major issues.

First, it is difficult to manufacturetheetalonspacing(gap) to thetolerancerequired for a

filter ordertomatchthelaserwavelength. Second,the laserwavelengthmaychangewith

timeanddrift outsideof thefilter bandpass. For this reason,eitherthe laserwavelength

mustbestabilizedor thefilter musttrackthechangein laserwavelength. A tunableetalon

resolvesbothof theseissues,while minimizing lasercomplexity. Our emphasisis on the

developmentof low-cost, simple, robust, tunable etalon filters. For space flight

applications, low parts count and potential for meeting vibration and environmental

conditionsarevery important.

Themostpopular tunableetalonsusepiezo-electrictransducers(PZT) to provide

tuning[l]. Thesedevicesare commerciallyavailableand have even beendeployed in

passive space flight instruments [2, 3]. However, PZT etalons require expensive

capacitivesensorsystems to insure plate parallelism. Liquid crystal [4] and ,lithium

niobate[5] electro-optic etalons have also been developed. Many liquid crystal etalons have

optical polarization dependence. In addition, materials issues make liquid crystal use in

space flight applications uncertain. Lithium niobate etalons have optical polarization

dependence. Polarization dependence reduces throughput (by 50%) t'or unpolarized

backscattered signal light or requires the use of two devices. A temperature tunable ZnS

solid etalon for use in fiber telecommunications was demonstrated by Chung[6]. In a

separate eflbrt, not yet reported, we are developing a bulk ZnS temperature tuned solid

etalon which exploits the large value temperature dependent refractive index of ZnS.

In this letter, we demonstrate tbr the first time, a temperature tunable air-gap etalon

for use in a 532 nm wavelength lidar optical receiver. The temperature tuned etalon may

offer a simpler, lower cost alternative to PZT (or other) etalons in applications where high
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etalontuning ratesarenot required. In our application,a wavelengthtuning rate of 20

pm/houris sufficient.

II. Air-Spaced Etalon Construction

An air spaced etalon consists of two flat parallel plates separated by an air gap.

The plate size and parallelism is controlled by spacers optically contacted to the plates. The

sides of the plates facing each other have a partially reflective coating for the wavelength

range of interest. The other sides of the plates usually have an appropriate ant-reflection

coating.

For etalons having a very narrow gap (< I).5 mm), the construction is modified

with a re-entrant design. This consists of using (1) additional, smaller diameter plates,

optically contacted, centrally, to the facing sides of the plates and (2) spacers which are

thicker than these additional plates by the value of the required gap. For typical fixed gap

etalons, the plates and spacers are fabricated from low expansion materials to provide a

thermally stable device. The coefficient of expansion of these structures would generally be

less than 1 x 10 .7 K _.

For the 532 nm prototype design, it is desired to have the etalon passband thermally

tunable in wavelength. To accomplish this, the spacer material is chosen for its thermal

coefficient of expansion, allowing inter-order tuning with a reasonable temperature change.

For the initial design, this range was conservatively chosen to be approximately I 1° C .

The temperature range must be large enough to hold the etalon at the required wavelength

without inordinately tight temperature control and small enough that differential expansion

between the materials does not cause delamination.
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The constructionis depictedin Fig.1. PlatesA and B are madeof fusedsilica.

PlateC is madeof ULE. Thespacers,S,arecompoundstructuresof fusedsilica and BK-

7, anopticalcrownglass.Therelationshipbetweenthe lengthof BK-7 in thespacersand

thethicknessof 'C' controls thecoefficientof expansionof thegap. All interfaces shown

are optical contacts. For the spectral requirements of the etalon, the reflective coatings, 'R',

are centered at 532 nm and have a reflectivity of 87.75%, and the gap is set at 0.236 mm.

Since the fabrication of the temperature tunable etalon is very similar to a fixed gap etalon,

it results in a simple, robust device.

IlI. Theory

Let lvt.e, denote the Ultra-Low Expansion (ULE) central plate (C) thickness (9.88

mm), lsx 7 , the BK-7 spacer thickness (free design parameter c'alculated below), IFs , the

fused silica spacer thickness (7.16 mm), and lc , the coating thickness (0.00106 mm).

Near room temperature, the thermal expansion coefficient, for fused silica, Ores, is 5.1 x

10 "7 K "1 , for ULE, auz.e, is 8.0 x 10 -" K _, tbr the coatings, a c , is 3.0 x 10 -6 K "1 and lbr

BK-7, otBx7 , is 7.1 x 10 .6 K "t . Thus, the thermal expansion coefficient, _,, of the etalon

gap is:

dg _ (a Bh.vlBh.7+ aFslFs ) _ (Ot,:_I,: _ + tXclc )
(I) Y- tiT

At 532.2 nm, an expansion of one order represents a change in the length of the gap by

2.661 x 10 .4 mm. For a design value temperature change of 11 C per order, the required

thickness of the BK-7 is calculated as 3 mm.
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To describethe temperaturetuning, we assumetheetalongap, g, changes linearly

with temperature g = go + ',/AT, where go is the etalon gap at a fixed temperature (To), and

ATis the temperature change (measured from To). Substituting this into the standard etalon

equation[7] gives the etalon transmission as:

(2) L =
Io (E J)4R 2ntr

1 sin cos(O) -7-- (go + ?'AT)4
(1 ,to

where I, is the intensity of the transmitted light, Io is the intensity of the incident light, R is

the mirror reflectivity, 0 is the incoming light angle of incidence, n is the air refractive

index, and _,o is the optical wavelength in vacuum. The theoretical transmission vs.

temperature curve, for normal incidence (0 = 0) using the aforementioned parameter values

in equation 2, is shown in Figure 2. The peak transmission value was taken as 0.91 (rather

than 1) to account for absorption, scattering and other losses.

Note that in equation (2), the etalon filter peak transmission wavelength can be

adjusted with angle, 0. Therefore, it is possible to angle tune the etalon filter, seemingly

eliminating the need for temperature tuning. However, for a fixed wavelength, due to the

nonlinearity of Eq. (2), the etalon tilter acceptance angle (field of view) changes severely

with input angle. Angle tuning, even over a small fraction of a FSR, is extremely difficult

where optical system throughput is a major concern. To obtain high system (instrument)

optical transmission, wavelength tuning by changing the optical path length of the etalon

gap is necessary.



For the 532 nm wavelengthetalonprototypewith rellectivity, R = 87.75%, the

theoretical finesse, F, defined as rtR_'/(l-R) , is 24. With a nominal 0.236 mm gap, g,

the free spectral range, FSR, defined as _,o"/(2ng), is 6{)0 pm. The theoretical etalon filter

optical bandpass is given as FSR/F = 25 pm.

IV. Experimental Results

The transmission of the etalon was measured using a diffraction limited, single-

frequency, 532.2 nm wavelength, 15 mm diameter laser beam. The angle of incidence was

controlled by an electronic steering mirror. The etalon was placed in a closed cell which

was temperature controlled using a heater and thermistor. The cell was set to a specific

temperature and the etalon so',.tked at that temperature. Care was taken to insure the etalon

stabilized at each temperature recorded. The temperature sensor was cross checked by an

additional independent sensor to insure calibration. The experimenfal transmission vs.

temperature data for the etalon is shown in Figure 2. There is excellent agreement with the

theory. The finesse was calculated from the experimental data to be 22, using the equation:

F = ATrsR/ATnt_ with ATne = 0.5 C and ATrs R = 11.1 C. This is in close agreement to the

theoretical value of 24. As a cross check in a separate experiment, we measured the optical

bandpass (full width at half maximum in wavelength) at a fixed etalon temperature as 27

pm, by tuning the wavelength of the laser source. This is also in close agreement with

theory and consistent with the finesse measurement. To date, we have noticed no

degradation of the etalon finesse after several free spectral range temperature cycles.

In addition to normal incidence measurements, the angle of incidence was swept

through 25 mrads, at each etalon temperature. The measured transmission vs. angle of

incidence at several temperatures (gap spacings) is shown in Figure 3 along with the

theoretical curves from Eq. 2. Again, the measured values show excellent agreement with
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thetheoreticalmodel. Figure3 alsoclearly illustratesflaatangle tuningis unacceptabledue

to thechangein theetalonfield of view asafunctionof angle.

V. Conclusion

We have demonstrated a temperature tuned air-gap etalon for the first time, to our

knowledge. The experimental results of our prototype 532 nm center wavelength etalon

falter are in very close agreement with the well known simple theoretical model. The

temperature tuned etalon may offer a simpler, lower cost alternative to PZT (or other)

etalons in applications where high etalon tuning rates are not required.
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FigureCaptions

Figure1.Air-gaptemperaturetunedetalondiagram

Figure2.TheoreticalandExperimentalTransmissionvs.Temperatureof air-gapetalon.

Experimentalcurvemeasured@ 532.289nm (vacuumwavelength)using15mm diameter

opticalbeam.Field of View (FWHM) = 13mrad,Bandpass= 27pm,FreeSpectral

(Tuning)Range= 600 pm, Finesse= 22

Figure3. - TheoreticalandExperimentalTransmissionvs.Angleof Incidenceat several

temperatures(asnoted)of theair-gapetalon.
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